Средние линии треугольников и четырехугольников

107. Мы знаем (п. 102), что геометрическим местом точек, равноотстоящих от двух данных параллельных прямых, служит средняя параллельная. Если таким образом AB и CD (чер. 114) суть две параллельные и MN для них средняя параллельная, то расстояния любой точки E этой средней параллельной от AB и CD равны между собою, т. е., построив EF ⊥ AB и EG ⊥ CD, получим, что EF = EG.

Средняя параллельная

Ясно, что построенные перпендикуляры EF и EG составляют продолжение друг друга и образуют один отрезок FG, перпендикулярный к нашим параллельным AB и CD, причем этот отрезок делится среднею параллельною (в точке E) пополам. Итак, всякий отрезок, перпендикулярный к двум параллельным и заключенный между ними, делится среднею параллельною пополам.

Возникает теперь вопрос: не будет ли также делиться пополам среднею параллельною какой-нибудь отрезок KL, не перпендикулярный к AB и CD. Пусть KL пересекается с MN в точке O. Построим через точку O перпендикулярный к прямым AB и CD отрезок HI. Тогда OH = OI. Так как, кроме того, ∠HOK = ∠IOL, как вертикальные, то прямоугольные треугольники OHK и OIL равны, откуда следует, что OK = OL. Итак, оказывается, что и любой отрезок, заключенный между двумя параллельными, делится среднею параллельною пополам.

Середины отрезков между параллельными

Пусть AB || CD (чер. 115). Построив между ними ряд каких-либо отрезков EF, GH, KI и т. д., мы, согласно предыдущему, найдем, что середины этих отрезков лежат на средней параллельной MN. В общем итоге мы приходим к следующему заключению:

Геометрическим местом середин всевозможных отрезков, заключенных между двумя параллельными, служит средняя параллельная.

Отсюда возникают возможности различных построений средней параллельной для двух данных параллельных прямых: 1) мы можем, построим любой отрезок EF, заключенный между двумя данными параллельными AB и CD, разделить его пополам и через его середину построить прямую MN || AB || CD — это прямая MN и должна служить среднею параллельною, и она должна делить пополам всевозможные отрезки (напр., GH, KI и т. д.), заключенные между AB и CD. 2) Мы можем построить два отрезка, напр., EH и KI, заключенные между AB и CD, разделить каждый из них пополам и через их середины построить прямую MN — она и должна служить среднею параллельною.

108. Применим свойства средней параллельной к знакомым нам фигурам и прежде всего треугольнику.

Середина треугольника

Пусть имеем ∆ABC (чер. 116). Здесь непосредственно мы не имеем двух параллельных, но мы всегда можем их получить, напр., построив через вершину A прямую EF || BC (эту прямую EF можно было бы и не рисовать на чертеже, так как она существенной роли не играет в дальнейшем и так как достаточно лишь знать, что она существует). Тогда мы имеем две параллельных BC и EF и два отрезка AB и AC, заключенных между ними. Разделив их пополам в точках M и N (AM = MB и AN = NC) и построив через M и N прямую MN, мы получим среднюю параллельную MN, т. е. MN || BC (и || EF, но это для нас не существенно). Из этого заключаем:

прямая, соединяющая середины двух сторон треугольника, параллельна его третьей стороне.

Отрезок, соединяющий середины двух сторон треугольника, называют среднею линиею треугольника. Итак, у нас отрезок MN есть средняя лини нашего треугольника.

Три средних линии треугольника

Пусть имеем ∆ABC (чер. 117). Разделим пополам каждую из его сторон: пусть M есть середина AB (сл. AM = MB), N — середина AC (AN = NC) и P — середина BC (BP = PC); соединим точки M, N и P отрезками MN, MP и PN, - каждый из этих отрезков является среднею линиею для нашего треугольника. Таким образом в треугольнике имеется три средних линии.

Согласно предыдущему, будем иметь: MN || BC, MP || AC и NP || AB. Поэтому AMPN, BMNP и PMNC суть параллелограммы. Так как в параллелограмме противоположные стороны равны, то имеем: MN = BP (из параллелограмма BMNP), но BP = BC/2 (ибо точка P есть середина BC); поэтому MN = BC/2. Также из параллелограмма AMPN получим: MP = AN = AC/2 и из параллелограмма AMPN — PN = AM = AB/2. Отсюда заключаем:

каждая средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей и равна ее половине.

109. Перейдем теперь к четырехугольникам и остановимся сначала на таких четырехугольниках, у которых две стороны параллельны. Принято называть такие четырехугольники трапециями. На чер. 118 изображены два различных вида трапеций: 1) трапеция ABCD, где BC || AD, но AB не параллельна CD, - эта трапеция имеет площадь (см. п. 79) и 2) трапеция A'B'C'D', где A'D' || B'C', - эта трапеция не имеет площади (п. 79).

Трапеции

Средние линии трапеций

Рассмотрим сначала трапецию ABCD (чер. 118 bis), имеющую площадь. Здесь BD || AD. Поэтому мы имеем две параллельных BC и AD и между ними отрезки AB и CD. Разделив эти отрезки пополам в точках M и N (AM = MB и CN = ND) и соединив их прямою MN, получим среднюю параллельную MN для BC и AD, т. е. MN || BC || AD. Отрезок MN этой прямой называется средней линиею трапеции (следует добавить: «соединяющей середины непараллельных сторон», потому что в трапеции, как и во всяком четырехугольнике, можно рассматривать 6 средних линий, что имеет место в п. 110). Итак, мы получили, что MN || BC || AD. Далее, построив диагональ AC, получим еще третий отрезок AC, заключенный между параллельными BC и AD — его середина должна лежать (п. 107) на средней параллельной, т. е. точка P, где пересекаются MN и AC, есть середина отрезка AC. Поэтому MP есть средняя линия треугольника ABC и PN — средняя линия ∆ACD. На основании предыдущего, имеем: MP = BC/2 и PN = AD/2. Отсюда получаем: MN = MP + PN = BC/2 + AD/2 или MN = (BC + AD)/2. Итак,

средняя линия, соединяющая середины непараллельных сторон трапеции, имеющей площадь, параллельна ее параллельным сторонам и равна их полусумме.

Пусть теперь имеем трапецию ABCD (чер. 118 bis), неимеющую площади. Здесь также BC || AD и поэтому середины M и N сторон AB и CD лежат на средней параллельной, т. е. здесь также имеем: MN || BC || AD. Построив диагональ AC, получим отрезок AC, заключенный между параллельными BC и AD, и его середина, точка P, должна лежать на средней параллельной. Поэтому PM есть средняя линия треугольника ABC и, следовательно PM = BC/2; также PN есть средняя линия ∆ABC и, след., PN = AD/2. Так как MN = PN – PM, то получим MN = PN – PM = AD/2 – BC/2 или MN = (AD – BC) / 2. Итак,

средняя линия, соединяющая середины непараллельных сторон трапеции, неимеющей площади, параллельна ее параллельным сторонам и равна их полуразности.

110. Пусть имеем какой-либо четырехугольник ABCD (имеющий площадь) — (чер. 119). Найдем середины M, N, P и Q его сторон и соединим их попарно. Получим 6 средних линий четырехугольника.

Средние линии четырехугольника

Вот свойства этих средних линий.

1) Средние линии, соединяющие середины последовательных сторон четырехугольника, образуют параллелограмм.

Для выяснения этого свойства построим диагональ AC. Тогда из ∆ABC имеем (п. 108) MN || AC и из ∆ACD на том же основании: PQ || AC, - следов., MN || PQ. Построив другую диагональ BD, найдем при ее помощи, что NP || MQ, следовательно, MNPQ есть параллелограмм.

2) Средние линии четырехугольника, соединяющие середины противоположных сторон, взаимно делятся пополам.

Это свойство теперь очевидно, так как MP и NQ являются диагоналями параллелограмма.
Через точку O пересечения прямых MP и NQ проходят также прямые, соединяющие середины диагоналей AC и BD (на чертеже диагональ BD не дана). Это следует из того, что AC И BD являются сторонами четырехугольника ACBD, не имеющего площади, к которому применимо все, изложенное в начале этого п.

111. Мы умели (пп. 57, 59) делить отрезок пополам и, следов., на 4, на 8 и вообще на 2n равных частей. Теперь мы можем разделить данный отрезок на 3, на 5 и вообще на сколько угодно равных частей.

Деление отрезка на нечетное количество частей

Пусть, напр., требуется отрезок AB (чер. 120) разделить на 5 равных частей. Построим через точку A произвольную прямую AC (образующую с AB угол, отличный от выпрямленного) и отложим на AC пять произвольных, но равных между собою, отрезков AE = EF = FG = GH = HO. Построим прямую OB и через точки E, F, G и Н построим прямые EE', FF', GG', HH', параллельные OB.

Рассмотрим ∆AFF', так как AE = EF, то E есть середина стороны AF и EE' (она || FF') есть средняя линия этого треугольника, следовательно, AE' = E'F'.

Рассмотрим затем трапецию EE'G'G. Так как EF = FG, FF' || EE', то FF' есть средняя линия трапеции EE'GG', - следовательно, E'F' = F'G'. Также найдем, что GG' есть средняя линия трапеции FF'H'H и, следов., F'G' = G'H' и т. д. Соединяя полученные равенства, найдем AE' = E'F' = F'G' = G'H' = H'B', т. е. отрезок AB разделился на 5 равных частей.

Из решения этой задачи можно вывести заключение:

Если на одной стороне угла отложить равные отрезки и чрез их концы построить ряд параллельных прямых, то и на другой стороне угла получим равные между собой отрезки.

Построение равных отрезков на другой прямой

Добавление. Мы откладывали равные отрезки на одной прямой подряд, начиная от точки пересечения двух прямых (AB и AC чертежа 120), но возможно к такому же результату прийти и при ином способе отложения равных отрезков. На чертеже 120 bis дано два варианта такого построения: на прямой AD (см. чер. 120 bis слева или справа) отложим два равных отрезка AB и CD и через их концы построим параллельные AA' || BB' || CC' || DD'. Затем возьмем точку O, середину отрезка BC, и построим OO' || BB' || CC' || AA' || DD'. Тогда OO' есть средняя линия трапеции BCC'B'; поэтому B'O' = O'C (п. 109). Так как AB = CD и BO = OC, то AO также = OD; поэтому OO' есть также средняя линия трапеции ADD'A' (на чертеже справа эта трапеция ADD'A' — не имеющая площади, см. п. 109) — и также A'O' = O'D'. Отсюда имеем A'O' – B'O' = O'D' – O'C' (ибо и уменьшаемые и вычитаемые обеих разностей равны), или A'B' = C'D'. Возможны и иные комбинации (напр., отр. CD правой фигуры отодвинуть так, чтобы точка C оказалась правее точки пересечения прямых AD и A'D'). Общее заключение таково: если построены две прямые, на одной из них отложены как-либо два равных отрезка и через концы их построены параллельные, то эти последние выделят и на другой прямой два равных между собою отрезка.

112. Упражнения.

  1. Через вершины данного треугольника построены прямые, параллельные его сторонам. Показать, что новый треугольник имеет стороны вдвое больше, чем стороны данного, и что вершины данного являются серединами сторон нового (сравн. упр. 7 из п. 54).
  2. Построить треугольник, если даны середины трех его сторон.
  3. Построить параллелограмм, если даны середины трех его сторон.
  4. Известно (п. 110), что середины четырех сторон четырехугольника являются вершинами параллелограмма. Когда этот параллелограмм обращается в ромб, когда в прямоугольник, когда в квадрат?
  5. Прямая, соединяющая вершину треугольника со срединою противоположной стороны (медиана) и прямая, соединяющая середины двух других сторон треугольника, взаимно делятся пополам.
  6. Продолжим одну сторону треугольника на отрезок, равный этой стороне, и соединим конец отрезка со срединою другой стороны. Последняя соединяющая прямая отсекает от третьей стороны треугольника отрезок, равный 1/3 этой стороны. (Построить еще прямую, параллельную последней соединяющей прямой чрез вершину треугольника, противолежащую той его стороне, которая была продолжена).
  7. Если на стороне AB параллелограмма ABCD отложить отрезок AM = (1/n)AB (напр., (1/7)AB) и соединить D с M, то DM пересечет диагональ AC в точке N так, что AN = (1/(n+1))AC (во взятом примере (1/8)AC).
    Для выяснения этого надо на продолжении стороны AB отложить BM' = AM и соединить C с M'; тогда C'M' || DM, – приметь п. 111.