Действия, обратные возведению в степень

7. В виду последней особенности действий возведения в степень для него можно составить 2 обратных задачи. Напр.:

1) Я задумал число, возвел его в третью степень (или: в куб), получилось 64; какое число я задумал?

Эту задачу можно записать в виде

(?)3 = 64

2) Я взял число 3, возвел его в некоторую степень, – получилось 81. В какую степень было возведено число 3.

Эту задачу можно записать в виде:

3? = 81

Теперь уже, так как возведение в степень не обладает переместительным законом, эти две задачи следует считать совершенно различными.

Сначала решать их можно подбором: попробуем число 1, 13 = 1, а не 64, след., 1 не годится; 23 = 8, а не 64, след., 2 не годится, 33 = 27, а не 64, след., 3 не годится; 43 = 64, след., в 1 задаче было задумано число 4. Также выясним, что во второй задаче число 3 было возведено в 4-ую степень.

Так как таких задач можно составить очень много, то для их решения необходимо изобрести новые действия. Эти действия обратны возведению в степень. Итак, для возведения в степень существуют два обратных действия: первое из них называется извлечением корня и служит для решения вопросов, подобных первой из наших задач; второе называется нахождением логарифма и служит для решения вопросов, подобных второй задаче.

Если мы обратим внимание на то, что в первой задаче нам даны степень 64 и показатель степени 3, то мы установим определение:

Извлечением корня называется действие, обратное возведению в степень, при помощи которого по данной степени и по данному показателю находят основание степени.

Также точно: во второй задаче даны степень (81) и основание степени (3), а надо найти показателя степени. Поэтому

нахождением логарифма называется действие, обратное возведению в степень, при помощи которого по данной степени и по данному основанию находится показатель степени.